How does radon get into buildings?
Studies of the geology of radon include research into how uranium and radon sources are distributed in rocks and soils, how radon forms in rocks and soils, and how radon moves. Studying how radon enters buildings from the soil and through the water system is also an important part of the geology of radon.
Radon movement
Because radon is a gas, it has much greater mobility than uranium and radium, which are fixed in the solid matter in rocks and soils. Radon can more easily leave the rocks and soils by escaping into fractures and openings in rocks and into the pore spaces between grains of soil.
The ease and efficiency with which radon moves in the pore space or fracture effects how much radon enters a house. If radon is able to move easily in the pore space, then it can travel a great distance before it decays, and it is more likely to collect in high concentrations inside a building.
The method and speed of radon’s movement through soils is controlled by the amount of water present in the pore space (the soil moisture content), the percentage of pore space in the soil (the porosity), and the “interconnectedness” of the pore spaces that determines the soil’s ability to transmit water and air (called soil permeability).
Radon entry into buildings
Radon moving through soil pore spaces and rock fractures near the surface of the earth usually escapes into the atmosphere. Where a house is present, however, soil air often flows toward its foundation for three reasons: (1) differences in air pressure between the soil and the house, (2) the presence of openings in the house’s foundation, and (3) increases in permeability around the basement (if one is present).
In constructing a house with a basement, a hole is dug, footings are set, and coarse gravel is usually laid down as a base for the basement slab. Then, once the basement walls have been built, the gap between the basement walls and the ground outside is filled with material that often is more permeable than the original ground. This filled gap is called a disturbed zone.
Radon moves into the disturbed zone and the gravel bed underneath from the surrounding soil. The backfill material in the disturbed zone is commonly rocks and soil from the foundation site, which also generate and release radon. The amount of radon in the disturbed zone and gravel bed depends on the amount of uranium present in the rock at the site, the type and permeability of soil surrounding the disturbed zone and underneath the gravel bed, and the soil’s moisture content.
The air pressure in the ground around most houses is often greater than the air pressure inside the house. Thus, air tends to move from the disturbed zone and gravel bed into the house through openings in the house’s foundation. All house foundations have openings such as cracks, utility entries, seams between foundation materials, and uncovered soil in crawl spaces and basements.
Most houses draw less than one percent of their indoor air from the soil; the remainder comes from outdoor air, which is generally quite low in radon. Houses with low indoor air pressures, poorly sealed foundations, and several entry points for soil air, however, may draw as much as 20 percent of their indoor air from the soil. Even if the soil air has only moderate levels of radon, levels inside the house may be very high.
Radon can also enter home through their water systems. Water in rivers and reservoirs usually contains very little radon, because it escapes into the air; so homes that rely on surface water usually do not have a radon problem from their water. In big cities, water processing in large municipal systems aerates the water, which allows radon to escape, and also delays the use of water until most of the remaining radon has decayed.
In many areas of the country, however, ground water is used as the main water supply for homes and communities. These small public water works and private domestic wells often have closed systems and short transit times that do not remove radon from the water or permit it to decay. This radon escapes from the water to the indoor air as people take showers, wash clothes or dishes, or otherwise use water. A very rough rule of thumb for estimating the contribution of radon in domestic water to indoor air radon is that house water with 10,000 pCi/L of radon contributes about 1 pCi/L to the level of radon in the indoor air.
The areas most likely to have problems with radon in ground water are areas that have high levels of uranium in the underlying rocks. For example, granites in various parts of the United States are sources of high levels of radon in ground water that is supplied to private water supplies.